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Abstract: The characteristics for the solution to the Turret Defense Differential Game are
explored over the parameter space. We collapse the five natural parameters of capture radius,
attacker speed, turret turn rate, time penalty constant, and look-angle penalty constant into two
composite parameters in order to facilitate the analysis. There exist three singular surfaces in
the game, two of which have an analytic form, and one which can only be obtained numerically.
We focus on the latter: the Attacker Dispersal Surface, wherein the attacker can choose between
an indirect or direct route to capture. For certain parameter settings, the Attacker Dispersal
Surface is present, while for others, the surface is absent. These regions in the parameter space
are identified, and the numerical procedures to do so are detailed. Backwards shooting of the
optimal state and adjoint dynamics features prominently in the procedures. Two pieces of
numerical evidence are utilized to indicate the presence or absence of the Attacker Dispersal
Surface.

Keywords: Differential or dynamic games; Singularities in optimization; Autonomous systems;
Navigation, Guidance, and Control;

1. INTRODUCTION

In differential games, parameters, often representing phys-
ical properties of the system, can play a significant role
in the overall nature of the solutions. In particular, the
number, type, and shape of singular surfaces in the state
space are all subject to change for different settings of
parameters. Isaacs identified different types of singular
surfaces including dispersal, universal, barrier, equivocal,
and transition surfaces (Isaacs, 1965). Later, Merz discov-
ered focal surfaces, whereby the optimal trajectories ap-
proach tangentially (Merz, 1971; Breakwell and Bernhard,
1990). There is, perhaps, no better example demonstrat-
ing the effects that parameters can have on the singular
surfaces than the Homicidal Chauffeur Differential Game
(HCDG) (Merz, 1971). See, for example, Fig. 1 which
portrays a partitioning of the parameter space into regions
in which the overall solution, comprised of regular tra-
jectories and singular surfaces, is fundamentally different.
The singular surfaces, themselves, are important in that
they often divide the state space into regions of win for
either agent or regions of different control. Therefore, the
importance of understanding singular surfaces and their
relationship to the game’s parameters cannot be over-
stated. Much of the work on singular surfaces by Isaacs,
Breakwell, Bernhard, Melikyan, and Lewin has focused
on analytical techniques (c.f. Isaacs, 1965; Breakwell and
Bernhard, 1990; Melikyan, 1994; Lewin, 1994). However,
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Fig. 1. Solution characteristics over the space of param-
eters in the Homicidal Chauffeur Differential Game,
reproduced from Merz (1971).

the focus in this paper is on numerical techniques, for
which there is a dearth of literature.

The Turret Defense Differential Game (TDDG) was in-
troduced by Akilan and Fuchs (2017) and solved for one
particular setting of parameters. The TDGG involves an
engagement between a mobile Attacker with simple motion
and a stationary Turret with a fixed turn rate. An integral



cost is imposed on the Attacker based on the look-angle
of the Turret in addition to a cost based on the amount
of time it takes the Attacker to come within the capture
distance, dc, of the Turret. The Turret seeks to maximize
the Attacker’s cost and does so by turning to keep the
Attacker in its line of sight. Three singular surfaces are
present in the TDDG: (1) the Turret Dispersal Surface
(TDS), (2) the Turret Universal Surface (TUS), and (3)
the Attacker Dispersal Surface (ADS) (Akilan and Fuchs,
2017). These names describe the type of the surface as
well as which agent has control authority on the surface.
In the case of the Dispersal Surfaces, the agent with
control authority must make a choice between two (or
more) optimal actions. Here, the Value function, which
gives the saddle-point equilibrium cost of the game for a
particular initial condition, is not differentiable (Başar and
Olsder, 1982). The Value function is also not differentiable
on the Turret Universal Surface; and in this case, the
Turret’s optimal control is not defined. Fortunately, both
the Turret Dispersal Surface and the Turret Universal
Surface can be handled analytically, as was done in Akilan
and Fuchs (2017). Neither of these surfaces are affected
by the parameter settings as they arise due to inherent
symmetries in the game. Our focus, in this paper, is on the
Attacker Dispersal Surface which does not have an analyt-
ical expression and thus must be treated numerically (see
Patsko et al., 2018, §2.5.1). In particular, we show that
the parameters’ settings affect not only the shape of the
surface but also whether or not the surface is even present.
The numerical process we develop to accomplish this task
is enabled by collapsing the five natural parameters into
two composite parameters.

The paper is organized as follows. Section 2 contains
the problem formulation and details the conversion from
the natural parameter space to the collapsed parameter
space. Section 3 formally describes Dispersal Surfaces and
includes necessary and sufficient conditions which are used
in the following section. Section 4 details two different
numerical approaches used to characterize the Attacker
Dispersal Surface. Section 5 concludes the paper and
discusses future research directions.

2. KINEMATICS AND SCALING
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Fig. 2. Coordinate system

Figure 2 shows the coordinate system used throughout the
remainder of the paper. Note this is a relative coordinate

system. As presented in Akilan and Fuchs (2017), the
coordinate system cannot be reduced further than three.
Note, the ‘global rotation’ of the system, β, is necessary
for the conversion of the relative states back to the natural
states (i.e. Cartesian coordinates of both agents), but not
necessary for computing the equilibrium trajectories of the
other states. The motivation to reduce the parameter set is
similar to the motivation for reducing the state dimension.
Different parameter sets may yield quite different player
behaviors across the state space. Characterizing these
different regions of optimal play over the space of possible
parameter settings is an important part of solving the
game (in a full sense). Doing so for large (> 3) numbers of
parameters may be difficult or intractable. Fortunately, it
is often possible to reduce the number of parameters via
various scalings and non-dimensional quantities.

For inspiration, consider the famous Buckingham π The-
orem, which is based upon unit compatibility, and is used
(particularly within the aerospace community) to derive
physical laws centered around non-dimensional numbers
(e.g., Reynolds number, Mach number, etc.). Without an

understanding of Reynolds number, Re = ρuL
µ , one may

unnecessarily repeat experiments with different length
scales (L) and speeds (u), but constant Re.

Such a collapsing of physical quantities can also be seen in
the HCDG wherein we see (Fig. 1) that it is the ratio of
capture radius to Chauffeur turn radius that is pertinent
to the different solution regions. Merz (1971) characterized
the entire parameter space, dividing it into 20 distinct
regions with different characteristics.

Here, the collapsing of the physical parameters is facili-
tated by scaling time and distance. For notational con-
venience, the dimensional variables are barred; the non-
barred variables denote the scaled quantities. The Tur-
ret Defense Differential Game kinematics were expressed
by Akilan and Fuchs (2017) originally and are given here
with a small correction and a simplification, along with
the optimal costate kinematics:

˙̄d = vA cos ψ̄, ψ̄ ∈ [0, 2π]

˙̄α = ω̄ − vA
1

d̄
sin ψ̄, ω̄ ∈ [−Ω,Ω]

˙̄β = vA
1

d̄
sin ψ̄

λ̇d̄ = −λᾱvA
1

d̄2
sin ψ̄

λ̇ᾱ = −c1
1

2
sin ᾱ

λ̇β̄ = 0.

(1)

where d̄(t̄f ) = dc and d̄(t̄) > dc, ∀t̄ < t̄f – that is, the
game terminates when the attacker reaches the capture
distance dc. From (1) and the boundary conditions, the
four parameters are apparent: attacker speed vA, maxi-
mum turret slew rate Ω, capture distance dc, and cost
parameter c1. The fifth parameter c2 appears in the cost
function (Akilan and Fuchs, 2017),

J̄ =

∫ t̄f

t̄0

(
c1

1

2
(1 + cos(ᾱ(t̄))) + c2

)
dt̄ (2)

as well as in the equilibrium terminal value of λd (Akilan
and Fuchs, 2017),



λd̄(t̄f ) = −
c1

1
2 (1 + cos(ᾱ(t̄f ))) + c2

vA
. (3)

Fact 1. The cost in (2) is already dimensionless and
altering its value with an additive offset or multiplicative
scaling does not change the equilibrium strategies.

The presence of the parameters in (1)–(3) suggests the
need to consider each of the equations when performing
any type of scaling. The methodology employed here is
described more fully by Langtangen and Pedersen (1985).
First, consider the following scaling of distance and time,

d =
d̄

dc
, t =

t̄

tc
(4)

where d and t are the scaled/non-dimensional versions of
distance and time, dc is, as before, the capture distance,
and tc is a time constant representing a characteristic time
associated with the problem. Let tc be the time it would
take the Attacker to travel a distance dc in a straight line,

tc =
dc
vA

(5)

Note that the independent variable, time, has been scaled,
and all of the states are now essentially dimensionless
since α and β are angles. Scaling in time affects all of the
states in (1), but scaling in distance requires special care

in obtaining ḋ. The closing velocity can now be expressed
in terms of non-dimensional distance and time,

˙̄d =
dd̄

dt̄
=

d(ddc)

d(ttc)
=
dc
tc

dd

dt
=
dc
tc
ḋ

=⇒ ḋ = tc
1

dc
˙̄d (6)

For α and β states we have,

˙̄θ =
dθ̄

dt̄
=

dθ̄

d(ttc)
=

1

tc

dθ

dt

=⇒ θ̇ = tc
˙̄θ, θ = α, β (7)

as a form for the dynamics. The relationship between the
scaled (non-barred) versions of the angles and their natural
counterparts is simply,

θ(t) = θ̄(t̄), θ = α, β (8)

Substituting (1), (4), and (5) into (6) and (7) yields the
following scaled state kinematics,

ḋ = tc
1

dc
vA cosψ = cosψ, ψ ∈ [0, 2π] ,

α̇ = tc

(
ω̄ − vA

d̄
sinψ

)
= ω − 1

d
sinψ, ω ∈ [−ρ, ρ] ,

β̇ = tcvA
1

d̄
sinψ =

1

d
sinψ,

(9)
where,

ρ =
Ωdc
vA

. (10)

Concerning the c1 and c2 parameters, let c1 = 1 without
loss of generality (see Fact 1), and c2 = c. The “natural”
cost J̄ may be recovered by J̄ = c1J . Define the set of
admissible initial conditions as

X := {x = (d, α, β) | d ≥ 1} . (11)

Now, the scaled Hamiltonian is written, using new, non-
barred versions of the costates, as,

H = λd cosψ + λα

(
ω − 1

d
sinψ

)
+

λβ
1

d
sinψ − 1

2
(1 + cosα)− c

(12)

The non-barred costate kinematics are then obtained by
taking the partial of H w.r.t. each (scaled) state,

λ̇d = −∂H

∂d
= (λβ − λα)

1

d2
sinψ,

λ̇α = −∂H

∂α
= −1

2
sinα,

λ̇β = −∂H

∂β
= 0.

(13)

To obtain the saddle point control strategies the Hamilto-
nian is minimized and maximized w.r.t. ω and ψ, respec-
tively. Incidentally, the expressions to follow are identical
to those given by Akilan and Fuchs (2017) except with
scaled/non-barred versions of the variables in place.

ω∗ = arg min
ω

H = −ρ signλα (14)

ψ∗ = arg max
ψ

H

=⇒ cosψ∗ =
λd
σA

, sinψ∗ =
−λα
dσA

, (15)

where,

σA =

√
λ2
d +

(
λα
d

)2

. (16)

Another consequence of the scaling in distance is that the
terminal condition is,

Γ(x) := d− 1, (17)

where x := (d, α, β)>. Termination occurs when the state
enters the terminal surface,

C :=
{
x
∣∣ Γ(x) = 0

}
. (18)

Using the Lagrange multiplier ν, the adjoined terminal
Value function is written,

Φ(xf ) = νΓ(xf ) = ν (d− 1) . (19)

Just as was done by Akilan and Fuchs (2017), differen-
tiating (19) w.r.t. the states yields the terminal costate
variables,

λd(tf ) =
∂Φ(xf )

∂d
= ν,

λα(tf ) =
∂Φ(xf )

∂α
= 0,

λβ(tf ) =
∂Φ(xf )

∂β
= 0.

(20)

Because the game is independent of time, the Hamiltonian,
(12), must be equal to zero at all time. Substituting the
equilibrium control strategies, (14) and (15), and terminal
costate values, (20), into (12) and setting time to tf gives

H ∗ ∣∣
t=tf

= |ν| − 1

2
(1 + cosαf )− c = 0. (21)

Solving for ν gives

|ν| = 1

2
(1 + cosαf ) + c. (22)

All together, (9), (13)–(16), (20), and (22) fully express
the regular solutions (i.e., the non-singular saddle point
equilibrium dynamics) of the TDDG in the scaled space.



Of primary importance is the fact that the five natural
parameters (vA, dc, Ω, c1, and c2) have been replaced with
two: ρ and c. In a general sense, ρ represents the control
authority of the Turret w.r.t. the Attacker: increasing ρ
favors the Turret (in terms of Value, given some initial
condition), whereas decreasing ρ favors the Attacker. The
cost parameter, c, functions in much the same way as
in the original (natural) representation of the game – it
is merely a weight affecting the relative importance of
time versus the Turret-induced cost to the Attacker. For
small settings of c, the Attacker will prefer to avoid the
Turret’s gaze even if it takes longer to reach termination
(and vice versa for large settings of c). Akilan and Fuchs
(2017) considered one particular set of natural parameters
throughout: dc = 1, vA = 1, Ω = 0.05, c1 = 1, and c2 =
0.01. This set corresponds to ρ = 0.05 and c = 0.01, which
we will henceforth refer to as the canonical parameters
for the TDDG. The process of filling the state space with
equilibrium trajectories is mostly standard for the TDDG:
backwards integration from the terminal set and from
points along the Turret Universal Surface. However, the
ADS requires special care as it does not have an analytical
expression.

3. GENERAL DISPERSAL SURFACE
CHARACTERISTICS

In this section, we formally state the characteristics of
a Dispersal Surface and establish criteria to be used in
the computation of the ADS. First, we define the Value
function as

V (x(t)) = min
ψ

max
ω

J(x(t);ψ(t), ω(t))

= max
ω

min
ψ
J(x(t);ψ(t), ω(t))

= max
ω

min
ψ

∫ tf

t

(
1

2
(1 + cosα(τ)) + c

)
dτ .

(23)

The Dispersal Surface is characterized by one (or both) of
the agents’ equilibrium actions being non-unique (Isaacs,
1965). That is, the agent whose equilibrium control is
non-unique may choose which equilibrium action to take,
leaving the Value of the game unaffected. Let XDS denote
the set of points on the Dispersal Surface. Let this be
a Dispersal Surface in which the Attacker’s equilibrium
action is non-unique, but the Turret’s equilibrium action
is uniquely defined. Let ψA and ψB represent two different
headings the Attacker can choose at particular state x′.
Criterion 1. The condition

V (x′(t)) = J(x′(t);ψA(t), ω∗(t)) = J(x′(t);ψB(t), ω∗(t))
(24)

where ω∗ = arg maxω J(x′(t);ψ(t), ω(t)) is necessary for
x′ ∈ XDS to hold.

That is, the Dispersal Surface is characterized by two
equilibrium trajectories intersecting at the same state
with the same Value. Because the system dynamics are
autonomous (i.e. not time-dependent), it is not necessary
for this intersection to occur at the same time.

4. ATTACKER DISPERSAL SURFACE

In this section we focus specifically on the Attacker Dis-
persal Surface in the TDDG. At a conceptual level, the
ADS arises due to the interplay between the (1 + cosα)

and the c terms of the cost functional’s integrand. On
the ADS, the Attacker has a choice between taking a
quicker route in which the (1 + cosα) term’s contribution
to the cost is higher, and a more round-about route in
which the c term’s contribution to the cost is higher. We
refer to these as the direct (D) and indirect (I) paths,
respectively. Based on the analysis in the previous section,
we develop two numerical procedures to characterize the
ADS. The first procedure computes the extent of the state
space that is covered by equilibrium trajectories emanating
from (in forward time) the ADS. This procedure provides
the primary evidence for the presence or absence of the
ADS, depending on the parameters. The second procedure
computes the surface itself and is included here to confirm
the results of the first procedure. Note that because of the
lack of an analytical expression for the ADS both proce-
dures are necessary to fill the state space with equilibrium
trajectories, which is synonymous with solving the TDDG
for particular parameter settings.

Before proceeding into the discussion of the procedures
themselves, we include some background on the other
singular surfaces and their interactions with the ADS.
Akilan and Fuchs (2017) showed that the Turret Dispersal
Surface is defined by

XTDS := {x | α = π} , (25)

which is the configuration in which the Turret is looking
directly away from the Attacker. In this symmetrical con-
figuration, the Turret has the choice of turning clockwise
or counter-clockwise at its maximum turn rate: ω∗ = ±ρ
– both choices are optimal. Upon the Turret making a
choice, the state of the system immediately departs the
TDS and both agents’ equilibrium controls are uniquely
defined. Akilan and Fuchs (2017) also showed that the
Turret Universal Surface is defined by

XTUS := {x | α = 0} . (26)

On the TUS, the Turret is looking directly at the Attacker;
the Turret’s control is ω∗ = 0 and the Attacker heads
directly towards the Turret, ψ∗ = π. The agents remain in
this configuration for the remainder of the game – neither
gains an advantage by deviating from this “locked on”
configuration.

Note that the TUS does not interact with the ADS, but
its tributaries must also be computed in order to fill
the state space with equilibrium trajectories. The TDS
is particularly important in the present context because it
coincides with the ADS.

4.1 ADS Envelope Computation

In this section, we present a procedure for computing the
envelope of the ADS. Because of the symmetrical nature
of the TDDG’s solution (c.f Akilan and Fuchs, 2017), we
can, without loss of generality, consider the part of the
state space in which 0 ≤ α ≤ π. For the remainder of
the paper, we continually make use of the solution of the
TDDG (9), (13)–(16), (20) and (22) to backwards integrate
from the terminal surface (18). This backwards integration
is carried out until the trajectory reaches the TDS, where
α = π since the trajectories can go no further and we are
interested in computing the maximal envelope of the ADS.
We define the following mapping between points on the



terminal surface and points along the trajectory obtained
by backwards integration of the solution:

B : αf , tf → x0,

s.t. (9), (13)–(16), (20) and (22),
(27)

where x0 = x(0). Making use of (24) we define the
envelope of the ADS as the pair

(αfL , αfU ) s.t.


d0L

= d0U
,

α0L
= α0U

= π,

αfL < αfU ,

V (x0L
) = V (x0U

)

(28)

where x0L
= B(αfL , tfL) = [d0L

α0L
β0L ]

>
, etc. In

general, tfL and tfU are not known a priori. However,
this is of little consequence since we can simply integrate
trajectories backwards in time until the condition α = π is
met. Indeed, the trajectories ought not go any further, due
to the TDS. The purpose of defining and computing (28)
is twofold. First, for αfL ≤ αf ≤ αfU the trajectories
terminate (in retrograde time) on the ADS while for
αf < αfL and αf > αfU the trajectories terminate on
the TUS and do not interact with the ADS. Second, when
αfL = αfU , i.e., there is no solution to (28) the ADS is not
present. We state the following, without proof:
Proposition 1. For the Attacker Dispersal Surface to exist
in the solution of the Turret Defense Differential Game,
(28) must be satisfied.

That is, if the ADS exists in the solution, we must be able
to compute the ADS’s envelope (αfL , αfU ).

Procedure Now, we describe a process by which the ADS
envelope, (28), is computed. Figures 3 and 4 contain
the results for this procedure which are illustrative for
describing the procedure itself. First, the terminal surface,
(18), is swept along a grid of αf , 0 < αf < π. The mapping
B is computed for each αf by backwards integration
until α = π, and the corresponding d0 and V values are
recorded. Figure 3 shows the d0 values along the horizontal
axis associated with the αf values. From (28), we require
that we have two different αf with the same d0. Thus
the gray dashed lines in the figure denote the bounds
for which this condition can be satisfied. All of the d0
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Fig. 3. Mapping of αf to d0 along the TDS indicating the
region of d0 (dashed gray lines) that may satisfy the
ADS envelope conditions and the d0 and (αfL , αfU )
for which the Value of the L and U trajectories are
equal. Initially 4,000 samples were used in the αf
sweep, and then 1,000 samples were used in the d0

sweep.
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Fig. 4. Residuals between the L and U trajectories corre-
sponding to Fig. 3.
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Fig. 5. Depiction of the ADS envelope in the state space
for ρ = 0.05 and c = 0.01. Equilibrium trajectories
emanating from the ADS fill the space between the
red and blue curves (i.e. the upper and lower extent
of the ADS envelope).

within this range satisfy the first three conditions in (28).
Satisfaction of the last condition, V (x0L

) = V (x0U
), is

the distinguishing criteria by which the ADS envelope is
determined. Then, a line of constant d0 (i.e., the red line in
the figure) is swept within the bounds. Because we started
with a grid of αf , the spacing of points in the d0 axis
is non-uniform. A new grid over the d0 is used and the
backwards “S” curve is interpolated to get approximate
candidate values for αfL and αfU . The mapping B is
recomputed for the approximate candidate αf values and
the initial distance residual d0L

− d0U
(Fig. 4a) and Value

residual V (x0L
)−V (x0U

) (Fig. 4b) are recorded. Note the
d0 residual is larger for smaller d0 because the upper part
of the curve is very flat here – a small error in αfU produces
a large deviation in d0U

. Finally, when the number of d0

samples is sufficiently large, the Value residual in Fig. 4b is
fairly smooth and monotonic with a unique zero crossing
(marked with the red line). This value for d0, and the
corresponding (αfL , αfU ) satisfies (28) and thus defines the
envelope of the ADS. Figure 5 shows the ADS envelope
trajectories in the state space along with the terminal
surface, the TDS, and the TUS.

Remarks Note that the ADS envelope conditions in (28)
can be determined by setting up an appropriate nonlinear
program (NLP). However, from our experience, it can
be difficult to enforce the condition αfL < αfU as the
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optimizer tends to end up in the situation where αfL =
αfU and dwells there. Also, the second stage of the
procedure, in which d0 is swept, may be replaced by a
binary search process due to the monotonicity of the Value
residual w.r.t. d0. This drastically reduces the number of
backwards shots needed in the second stage. For example,
to obtain a Value residual < 1× 10−12 only 37 backwards
shots are needed for the example in Fig. 3. In this way, the
Value residual tolerance can be directly specified, and the
d0 residual is directly affected by the number of samples in
the initial αf grid. Figure 6 shows the result of using binary
search to find the zero crossing of the Value residual.

The trajectories generated within the range αfL < αf <
αfU do not actually reach back to the TDS, since this
would require passing through the ADS. Therefore, the
middle section of the backwards “S” curve in Fig. 3 is
meaningless for our purposes. Algorithm 1 summarizes the
procedure used to compute the ADS envelope (αfL , αfU ).

Algorithm 1 ADS Envelope (with binary search)

d0 ← empty vector
for αfi in αf grid do

d0i ← B(αfi , tf ) . backwards integrate
end for
d0min , d0max ← local min & max of d0

Vresid ←∞
while Vresid > ε do . binary search

dmid ← (d0min + d0max)/2
αfL , αfU = B−1(dmid) . see Fig. 3
x0L
← B(αfL , tf ) . backwards integrate

x0U
← B(αfU , tf ) . backwards integrate

Vresid ← V (x0L
)− V (x0U

)
if Vresid > 0 then

d0max ← dmid

else
d0min ← dmid

end if
end while

4.2 Different Parameters

In this section, we demonstrate the utility of the previously
described numerical procedure in determining the regions
of the parameter space in which the ADS is present. As
Proposition 1 suggests, the inability for the procedure to
find (αfL , αfU ) that satisfies (28) indicates that there is
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no ADS in the solution to the TDDG. Figure 7 shows
the results of the backwards integration process (i.e. the
backwards “S” curves) for different settings of the cost
parameter c for a particular Turret effectiveness setting,
ρ. For c = 0.043, the curve flattens out to the point that
for each d0 there is a unique αf . Thus, the conditions for
the ADS envelope (28), in particular the requirements that
αfL < αfU and d0L

= d0U
, cannot be met. It is precisely

at this setting of c, i.e., where there exists a point on the
curve s.t. dd0/dαf = 0, that the ADS disappears from
the solution of the TDDG. As suggested by the curve in
Fig. 7 corresponding to c = 0.08, the ADS is absent for
all c > 0.043, in this case. Repeating the process across a
range of ρ yields the curve in Fig. 8.

4.3 ADS Termination Point Computation

In order to gain a better understanding of the ADS and
how it is affected by the parameter settings, we develop
here a procedure for computing the surface itself. We have
observed that one of the endpoints of the ADS (if it exists)
lies on the TDS. Akilan and Fuchs (2017) showed that, for
the canonical parameter settings, the other endpoint of
the ADS is not coincident with any other surface. The
approach for computing points on the ADS is based upon
solving for a pair of trajectories satisfying

(αfl , αfu) s.t.


d0l

= d0u
= d0,

α0l
= α0u

= α0,

αfl < αfu ,

V (x0l
) = V (x0u

)

(29)
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where d0 is the specified distance associated with the point
on the ADS for which we are solving. The condition (29) is
similar to (28) but with a free α0. Again, the tf associated
with these trajectories is not known a priori. However,
using integrator callbacks (c.f. Rackauckas and Nie, 2017),
we can integrate backwards until the specified distance
d0 is reached. To solve for (αfl , αfu), we employ an NLP
solver which seeks to minimize the following residual

r =

∥∥∥∥V (x0l
)− V (x0u

)
α0l
− α0u

∥∥∥∥
To generate a series of points on the ADS, we solve (29)
along a grid of d0. We begin with some appropriate d0

and proceed in decreasing order of d0 along this grid. A
homotopy approach is used in which the NLP solver is
given the (αfl , αfu) of the previous d0 as an initial guess.
Figure 9 contains the results of this procedure for a relative
time cost setting c = 0.01. Note on the left side of the
plot the two curves quickly converge s.t. αfl ≮ αfu . Thus
for d0 ≤ 1.5 the condition αfl < αfu in (29) cannot be
satisfied. The leftmost d0 point corresponds to the non-
TDS endpoint of the ADS. For each solution in Fig. 9, we
record the α0 to which the upper and lower trajectories
integrate back to. The points (d0, α0) represent the ADS
itself. We repeat the procedure for different settings of
c up until c ≈ 0.043 whereupon, based on Fig. 8, we
expect the ADS to disappear. Figure 10 shows the Attacker
Dispersal Surfaces for ρ = 0.05 and several different c. As
c is increased from 0.01 to ≈ 0.43, the endpoint of the
ADS recedes away from the terminal surface and towards
the TDS. These results corroborate our earlier statements
about the disappearance of the ADS from the solution of
the TDDG for high settings of c. Algorithm 2 summarizes

the process for computing the ADS once for a particular
setting of c.

Algorithm 2 ADS Computation

XADS ← ∅
i← length (d0 grid)
αfl ← 0 and αfu ← π
guess← (αfl , αfu)
while αfu − αfl > ε and i ≥ 0 do

d0 ← d0 grid [i]
αfl , αfu , α0 ← solution to (29) with guess . NLP
if αfu − αfl > ε then

XADS ← XADS ∪ {(d0, α0)}
guess← (αfl , αfu)

end if
i← i− 1

end while

5. CONCLUSION

In this paper we have analyzed the Turret Defense Differ-
ential Game – a game with three states, only two of which
affect the solution. Despite the simplicity of its dynamics,
the full solution of the game is difficult to obtain due to
the presence of a non-analytical singular surface: the At-
tacker Dispersal Surface. Numerical methods are required
to characterize the Attacker Dispersal Surface as well as
to compute the surface itself. Furthermore, the original
description of the game contains five natural parameters,
which makes understanding the impact of parameters on
the solution (particularly the Attacker Dispersal Surface)
difficult. We have collapsed the five natural parameters
into two composite parameters: the Turret effectiveness,
ρ, and the relative time cost c. The scaling of the kine-
matics facilitated the exploration of the parameter space.
We developed two numerical approaches, based on the
general definition of a dispersal surface, to characterize the
Attacker Dispersal Surface. These approaches allowed us
to expose an interesting feature of the game’s solution: the
Attacker Dispersal Surface is only present over a portion
of the parameter space.

In general, analysis of non-analytic singular surfaces, even
relatively “benign” types as in the dispersal surface, is
difficult. The numerical approaches developed here make
extensive use of the unique aspects of the game and are
built upon existing general purpose algorithms such as nu-
merical integration, root finding, binary search, nonlinear
programming, etc. An interesting research direction would
be to generalize some of these concepts to better address
non-analytic singular surfaces in other games.
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Başar, T. and Olsder, G.J. (1982). Dynamic Noncoop-
erative Game Theory, volume 160 of Mathematics in
Science and Engineering. Elsevier, 2nd edition. URL
https://www-sciencedirect-com.wrs.idm.oclc.
org/science/journal/00765392/160/supp/C.

Breakwell, J.V. and Bernhard, P. (1990). A simple
game with a singular focal line. Journal of Optimiza-
tion Theory and Applications, 64, 419–428. doi:10.
1007/bf00939457. URL http://dx.doi.org/10.1007/
bf00939457.

Isaacs, R. (1965). Differential Games: A Mathematical
Theory with Applications to Optimization, Control and
Warfare. Wiley, New York.

Langtangen, H.P. and Pedersen, G.K. (1985). Scaling
of Differential Equations. Springer-Verlag. URL
https://hplgit.github.io/scaling-book/doc/
pub/book/pdf/scaling-book-4print.pdf.

Lewin, J. (1994). Differential Games: Theory and Meth-
ods for Solving Game Problems with Singular Surfaces.
Springer-Verlag London Limited.

Melikyan, A.A. (1994). Singular paths in differential
games with simple motion. 125–135. URL
https://link-springer-com.wrs.idm.oclc.org/
chapter/10.1007/978-1-4612-0245-5_7.

Merz, A.W. (1971). The Homicidal Chauffeur - A Differ-
ential Game. Ph.D. thesis, Stanford.

Patsko, V., Kumkov, S., and Turova, V. (2018). Pursuit-
Evasion Games, 1–87. Springer International Publish-
ing. doi:10.1007/978-3-319-27335-8 30-2. URL http://
dx.doi.org/10.1007/978-3-319-27335-8_30-2.

Rackauckas, C. and Nie, Q. (2017). Differentialequations.jl
a performant and feature-rich ecosystem for solving
differential equations in julia. Journal of Open Research
Software, 5. doi:10.5334/jors.151. URL http://dx.
doi.org/10.5334/jors.151.

https://www-sciencedirect-com.wrs.idm.oclc.org/science/journal/00765392/160/supp/C
https://www-sciencedirect-com.wrs.idm.oclc.org/science/journal/00765392/160/supp/C
http://dx.doi.org/10.1007/bf00939457
http://dx.doi.org/10.1007/bf00939457
https://hplgit.github.io/scaling-book/doc/pub/book/pdf/scaling-book-4print.pdf
https://hplgit.github.io/scaling-book/doc/pub/book/pdf/scaling-book-4print.pdf
https://link-springer-com.wrs.idm.oclc.org/chapter/10.1007/978-1-4612-0245-5_7
https://link-springer-com.wrs.idm.oclc.org/chapter/10.1007/978-1-4612-0245-5_7
http://dx.doi.org/10.1007/978-3-319-27335-8_30-2
http://dx.doi.org/10.1007/978-3-319-27335-8_30-2
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.5334/jors.151

	Introduction
	Kinematics and Scaling
	General Dispersal Surface Characteristics
	Attacker Dispersal Surface
	ADS Envelope Computation
	Different Parameters
	ADS Termination Point Computation

	Conclusion
	Acknowledgements

